Boolos' Analytical completeness Kripke Models

Konstantinos Papafilippou

Ghent University

January 21, 2021

- Formulas of arithmetic can be coded within the language of arithmetic. Given a formula ϕ , let $^{r}\phi^{1}$ be its code.
- Prov(x) is the Σ_1 -formula stating that x is the code of a formula that is provable in PA.
- Prf(y, x) is the Δ_1 -formula stating that x is the code of a formula y codes a proof of it in PA.

Notation:

We will write:

- Prov(ϕ) instead of Prov($^{r}\phi$);
- $Prf(y, \phi)$ instead of $Prf(y, \lceil \phi \rceil)$.

Löb's derivability conditions

- i. $PA \vdash \phi \Rightarrow PA \vdash Prov(\phi)$:
- ii. $PA \vdash Prov(\phi \rightarrow \psi) \rightarrow (Prov(\phi) \rightarrow Prov(\psi));$
- iii. $PA \vdash Prov(\phi) \rightarrow Prov(Prov(\phi))$.

Theorem

0000

For every Σ_1 -formula ϕ ,

$$\mathsf{PA} \vdash \phi \to \mathsf{Prov}(\phi).$$

Löb's Theorem

 $\mathsf{PA} \vdash \mathsf{Prov}(\phi) \to \phi \Rightarrow \mathsf{PA} \vdash \phi$.

Gödel - Löb modal logic

GL is a propositional modal logic with the unary modality \square .

Axioms: Boolean tautologies

- 1. $\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi);$
- 2. $\Box \varphi \rightarrow \Box \Box \varphi$;
- 3. $\Box(\Box\varphi\to\varphi)\to\Box\varphi$.

Inference rules: • Modus Ponens;

• Necessitation: $\frac{\varphi}{\Box \varphi}$.

Solovay's Theorem for GL

An interpretation/realization is a function $(\cdot)^*$ that maps propositional variables to formulas of arithmetic. It can be naturally expanded to a function from all modal formulas:

- $(\phi \to \psi)^* := (\phi)^* \to (\psi)^*$;
- $(\neg \phi)^* := \neg (\phi)^*$;
- $(\Box \phi)^* := \operatorname{Prov}((\phi)^*).$

Solovay's Theorem

For every modal formula ϕ :

 $GL \vdash \phi \iff PA \vdash (\phi)^*$, for every realization $(\cdot)^*$.

Analysis

- In Second order Arithmetic we add set variables and the membership relation ∈.
- Analysis is the theory of Second order Arithmetic extending PA with the axioms:

IND:
$$\forall X \ (0 \in X \land \forall y \ (y \in X \rightarrow y + 1 \in X)) \rightarrow \forall y \ (y \in X);$$

C: $\exists X \forall y \ (y \in X \leftrightarrow \phi(y)),$ for every formula ϕ .

• We write $\vdash \phi$ to denote that ϕ is provable in Analysis.

Second order Quantification in the arithmetical hierarchy

- Δ_0^0 -formulas are those with only bounded quantification;
- Σ_{n+1}^0 -formulas are those equivalent to a formula $\exists x \, \phi(x)$ where $\phi(x)$ is Π_n^0 ;
- Π_{n+1}^0 -formulas are those equivalent to a formula $\exists x \, \phi(x)$ where $\phi(x)$ is Σ_n^0 ;

Second order Quantification in the arithmetical hierarchy

- Δ_0^0 -formulas are those with only bounded quantification;
- Σ_{n+1}^0 -formulas are those equivalent to a formula $\exists x \, \phi(x)$ where $\phi(x)$ is Π_n^0 ;
- Π_{n+1}^0 -formulas are those equivalent to a formula $\exists x \, \phi(x)$ where $\phi(x)$ is Σ_n^0 ;
- Π_0^1 -formulas are those that are Π_n^0 for some n;
- Σ_{n+1}^1 -formulas are those equivalent to a formula $Q_1x_1 \dots Q_mx_m \exists X \phi(x)$ where $\phi(x)$ is Π_n^1 ;
- Π^1_{n+1} -formulas are those equivalent to a formula $Q_1x_1 \dots Q_mx_m \forall X \phi(x)$ where $\phi(x)$ is Σ^1_n .

Here the Q_i are one of the \exists and \forall .

ω -Provability

- $\omega \vdash \phi$ iff ϕ belongs to the closure of the class of the axioms of analysis under the usual finitary rules and under the ω -rule.
- ω -rule: $\frac{\phi(\underline{0}), \phi(\underline{1}), \dots}{\forall x \phi(x)}$
- ω -Prov denotes the class of Godel numbers of ω -provable formulas;
- Prov $_{\omega}(x)$ denotes the Π^1_1 -formula of analysis defining ω -Prov;

ω -Provability

- $\omega \vdash \phi$ iff ϕ belongs to the closure of the class of the axioms of analysis under the usual finitary rules and under the ω -rule.
- ω -rule: $\frac{\phi(\underline{0}), \phi(\underline{1}), \dots}{\forall x \phi(x)}$
- ω -Prov denotes the class of Godel numbers of ω -provable formulas;
- Prov_{ω}(x) denotes the Π_1^1 -formula of analysis defining ω -Prov;
- $Con(x) := \neg Prov(\ulcorner \neg \urcorner x);$
- $Con_{\omega}(x) := \neg Prov_{\omega}(\ulcorner \neg \urcorner x).$

Japaridze Polymodal Logic

GLP₂ is the propositional modal logic with two unary modalities [0] and [1].

Axioms: Boolean tautologies

- Inference rules: Modus Ponens:
 - Necessitation: $\frac{\varphi}{[i]\varphi}$, for i = 0, 1.

Japaridze Polymodal Logic

GLP₂ is the propositional modal logic with two unary modalities [0] and [1].

Axioms:

Boolean tautologies

L1.
$$[i](\varphi \rightarrow \psi) \rightarrow ([i]\varphi \rightarrow [i]\psi)$$
, for $i = 0, 1$;

L2.
$$[i]\varphi \rightarrow [i][i]\varphi$$
, for $i = 0, 1$;

L3.
$$[i]([i]\varphi \rightarrow \varphi) \rightarrow [i]\varphi$$
, for $i = 0, 1$;

- Inference rules: Modus Ponens:
 - *Necessitation*: $\frac{\varphi}{[i]\varphi}$, for i = 0, 1.

Japaridze Polymodal Logic

GLP₂ is the propositional modal logic with two unary modalities [0] and [1].

Axioms:

Boolean tautologies

L1.
$$[i](\varphi \rightarrow \psi) \rightarrow ([i]\varphi \rightarrow [i]\psi)$$
, for $i = 0, 1$;

L2.
$$[i]\varphi \rightarrow [i][i]\varphi$$
, for $i = 0, 1$;

L3.
$$[i]([i]\varphi \rightarrow \varphi) \rightarrow [i]\varphi$$
, for $i = 0, 1$;

J1.
$$[0]\varphi \rightarrow [1]\varphi$$
;

J2.
$$\langle 0 \rangle \varphi \rightarrow [1] \langle 0 \rangle \varphi$$
.

Inference rules: • Modus Ponens:

• Necessitation:
$$\frac{\varphi}{[i]\varphi}$$
, for $i=0,1$.

Where $\langle i \rangle \phi$ denotes $\neg [i] \neg \phi$.

Solovay in Analysis

We extend the notion of a realization as before to include all modal formulas in the language with the two unary modalities:

- $([0]\phi)^* = \text{Prov}(\phi^*);$
- $([1]\phi)^* = \mathsf{Prov}_{\omega}(\phi^*).$

Theorem

For every modal formula ϕ :

 $GLP_2 \vdash \phi \iff \vdash (\phi)^*$, for every realization $(\cdot)^*$.

Analytical Soundness

•000

Löb's derivability conditions

- i. $\vdash \phi \Rightarrow \vdash \mathsf{Prov}_{\omega}(\phi)$;
- ii. $\vdash \mathsf{Prov}_{\omega}(\phi \to \psi) \to (\mathsf{Prov}_{\omega}(\phi) \to \mathsf{Prov}_{\omega}(\psi));$
- iii. $\vdash \mathsf{Prov}_{\omega}(\phi) \to \mathsf{Prov}_{\omega}(\mathsf{Prov}_{\omega}(\phi))$.

Analytical Soundness

•000

Löb's derivability conditions

- i. $\vdash \phi \Rightarrow \vdash \mathsf{Prov}_{\omega}(\phi)$:
- ii. $\vdash \mathsf{Prov}_{\omega}(\phi \to \psi) \to (\mathsf{Prov}_{\omega}(\phi) \to \mathsf{Prov}_{\omega}(\psi));$
- iii. $\vdash \mathsf{Prov}_{\omega}(\phi) \to \mathsf{Prov}_{\omega}(\mathsf{Prov}_{\omega}(\phi))$.

Lemma

$$\vdash \neg \operatorname{\mathsf{Prov}}(\phi) \to \operatorname{\mathsf{Prov}}_{\omega} (\neg \operatorname{\mathsf{Prov}}(\phi)).$$

Analytical Soundness

•000

Löb's derivability conditions

- i. $\vdash \phi \Rightarrow \vdash \mathsf{Prov}_{\omega}(\phi)$:
- ii. $\vdash \mathsf{Prov}_{\omega}(\phi \to \psi) \to (\mathsf{Prov}_{\omega}(\phi) \to \mathsf{Prov}_{\omega}(\psi));$
- iii. $\vdash \mathsf{Prov}_{\omega}(\phi) \to \mathsf{Prov}_{\omega}(\mathsf{Prov}_{\omega}(\phi))$.

Lemma

$$\vdash \neg \operatorname{\mathsf{Prov}}(\phi) \to \operatorname{\mathsf{Prov}}_{\omega} (\neg \operatorname{\mathsf{Prov}}(\phi)).$$

Proof Sketch:

Formalize in Analysis:

$$\frac{\neg \operatorname{Prf}(0,\phi), \neg \operatorname{Prf}(1,\phi), \dots}{\forall x \neg \operatorname{Prf}(x,\phi)}$$

Analytical Soundness

•000

Löb's derivability conditions

- i. $\vdash \phi \Rightarrow \vdash \mathsf{Prov}_{\omega}(\phi)$:
- ii. $\vdash \mathsf{Prov}_{\omega}(\phi \to \psi) \to (\mathsf{Prov}_{\omega}(\phi) \to \mathsf{Prov}_{\omega}(\psi));$
- iii. $\vdash \mathsf{Prov}_{\omega}(\phi) \to \mathsf{Prov}_{\omega}(\mathsf{Prov}_{\omega}(\phi))$.

Lemma

$$\vdash \neg \operatorname{\mathsf{Prov}}(\phi) \to \operatorname{\mathsf{Prov}}_{\omega} (\neg \operatorname{\mathsf{Prov}}(\phi)).$$

Proof Sketch:

Formalize in Analysis:

$$\frac{\neg \operatorname{Prf}(0,\phi), \neg \operatorname{Prf}(1,\phi), \dots}{\forall x \neg \operatorname{Prf}(x,\phi)} \Rightarrow \omega \vdash \neg \operatorname{Prov}(\phi).$$

Analytical Soundness

0000

Theorem (Steven Orey; 1956)

For every Π_1^1 -formula ϕ ,

 $\vdash \phi \rightarrow \mathsf{Prov}_{\omega}(\phi)$.

Π_1^1 -completeness

Theorem (Steven Orey; 1956)

For every Π_1^1 -formula ϕ ,

$$\vdash \phi \rightarrow \mathsf{Prov}_{\omega}(\phi).$$

Theorem

Every Π_1^1 formula of analysis is equivalent to a formula of the form:

$$\forall f \exists x \ R(\overline{f}(x));$$

- R defines a primitive recursive relation;
- $\overline{f}(x)$ denotes the code of the sequence $\langle f(0), \ldots, f(x-1) \rangle$.

 $Sec = \{s : s \text{ codes a finite sequence and } \omega \vdash \forall f \exists x \ R(s * \overline{f}(x))\}.$

Analytical Soundness

0000

Lemma

If R(s), then $s \in Sec$.

 $Sec = \{s : s \text{ codes a finite sequence and } \omega \vdash \forall f \exists x \ R(s * \overline{f}(x))\}.$

Analytical Soundness

0000

Lemma

If R(s), then $s \in Sec$.

Proof:

Assume R(s), then $\vdash R(s)$ and so $\vdash \forall f \ R(s * \overline{f}(0))$.

Analytical Soundness

0000

 $Sec = \{s : s \text{ codes a finite sequence and } \omega \vdash \forall f \exists x \ R(s * \overline{f}(x))\}.$

Lemma

If R(s), then $s \in Sec$.

Proof:

Assume R(s), then $\vdash R(s)$ and so $\vdash \forall f \ R(s * \overline{f}(0))$.

Lemma

If for every i it holds $s * i \in Sec$, then $s \in Sec$.

Lemmata we will use to prove Π_1^1 -completeness

 $Sec = \{s : s \text{ codes a finite sequence and } \omega \vdash \forall f \exists x \ R(s * \overline{f}(x))\}.$

Lemma

If R(s), then $s \in Sec$.

Proof:

Assume R(s), then $\vdash R(s)$ and so $\vdash \forall f \ R(s * \overline{f}(0))$.

Lemma

If for every i it holds $s * i \in Sec$, then $s \in Sec$.

Proof:

If $\omega \vdash \forall f \exists x \ R(s * i * \overline{f}(x))$ for every i, thus

$$\frac{\forall f \exists x \ R(s*0*\overline{f}(x)), \forall f \exists x \ R(s*1*\overline{f}(x)), \dots}{\forall y \forall f \exists x \ R(s*y*\overline{f}(x))}$$

Analytical Soundness

0000

Suppose that $\langle \ \rangle \not\in Sec;$

Suppose that $\langle \ \rangle \not\in Sec;$ define the function g as follows:

• $g(0) = \langle \rangle$;

Proving Π_1^1 -completeness

Suppose that $\langle \ \rangle \not\in Sec;$ define the function g as follows:

- $g(0) = \langle \rangle$;
- $g(x+1) = \mu i \{g(n) * i \notin Sec\}$, if $g(n) * i \notin Sec$ for some i;
- g(x+1) = 0 otherwise.

Proving Π_1^1 -completeness

Suppose that $\langle \ \rangle \not\in Sec;$ define the function g as follows:

- $g(0) = \langle \rangle$;
- $g(x+1) = \mu i \{g(n) * i \notin Sec\}$, if $g(n) * i \notin Sec$ for some i;
- g(x+1) = 0 otherwise.

By the previous Lemmata: $\forall x \ g(x) \notin Sec$,

Suppose that $\langle \ \rangle \not\in Sec;$ define the function g as follows:

- $g(0) = \langle \rangle$;
- $g(x+1) = \mu i \{g(n) * i \notin Sec\}$, if $g(n) * i \notin Sec$ for some i;
- g(x+1) = 0 otherwise.

By the previous Lemmata: $\forall x \ g(x) \notin Sec$, and so $\forall x \ \neg R(g(x))$.

Proving Π_1^1 -completeness

Suppose that $\langle \ \rangle \not\in Sec;$ define the function g as follows:

- $g(0) = \langle \rangle$;
- $g(x+1) = \mu i \{g(n) * i \notin Sec\}$, if $g(n) * i \notin Sec$ for some i;
- g(x+1) = 0 otherwise.

By the previous Lemmata: $\forall x \ g(x) \notin Sec$, and so $\forall x \ \neg R(g(x))$.

• Let $f(x) = (g(x+1))_x$,

Proving Π_1^1 -completeness

Suppose that $\langle \ \rangle \not\in Sec;$ define the function g as follows:

- $g(0) = \langle \rangle$;
- $g(x+1) = \mu i \{g(n) * i \notin Sec\}$, if $g(n) * i \notin Sec$ for some i;
- g(x+1) = 0 otherwise.

By the previous Lemmata: $\forall x \ g(x) \notin Sec$, and so $\forall x \ \neg R(g(x))$.

- Let $f(x) = (g(x+1))_x$,
- then $\forall x \neg R(\overline{f}(x))$, a contradiction!

Ignatiev's fragment of GLP₂

 I_2 is the subsystem of GLP_2 :

Axioms: Boolean tautologies

Inference rules: • Modus Ponens:

• Necessitation: $\frac{\varphi}{[i]\varphi}$, for i=0,1.

Ignatiev's fragment of GLP₂

 I_2 is the subsystem of GLP_2 :

Axioms: Boolean tautologies

L1. $[i](\varphi \rightarrow \psi) \rightarrow ([i]\varphi \rightarrow [i]\psi)$, for i = 0, 1;

L2. $[i]\varphi \rightarrow [i][i]\varphi$, for i = 0, 1;

L3. $[i]([i]\varphi \rightarrow \varphi) \rightarrow [i]\varphi$, for i = 0, 1;

Inference rules: • Modus Ponens;

• Necessitation: $\frac{\varphi}{[i]\varphi}$, for i=0,1.

Ignatiev's fragment of GLP₂

I_2 is the subsystem of GLP_2 :

Axioms: Boolean tautologies

L1. $[i](\varphi \rightarrow \psi) \rightarrow ([i]\varphi \rightarrow [i]\psi)$, for i = 0, 1;

L2. $[i]\varphi \rightarrow [i][i]\varphi$, for i = 0, 1;

L3. $[i]([i]\varphi \rightarrow \varphi) \rightarrow [i]\varphi$, for i = 0, 1;

11. $[0]\varphi \rightarrow [1][0]\varphi$;

J2. $\langle 0 \rangle \varphi \rightarrow [1] \langle 0 \rangle \varphi$.

Inference rules: • Modus Ponens;

• *Necessitation*: $\frac{\varphi}{[i]\varphi}$, for i = 0, 1.

Where $\langle i \rangle \phi$ denotes $\neg [i] \neg \phi$.

Beklemishev's J_2

J_2 is the subsystem of GLP_2 :

Axioms: Boolean tautologies

L1.
$$[i](\varphi \rightarrow \psi) \rightarrow ([i]\varphi \rightarrow [i]\psi)$$
, for $i = 0, 1$;

L2.
$$[i]\varphi \rightarrow [i][i]\varphi$$
, for $i = 0, 1$;

L3.
$$[i]([i]\varphi \rightarrow \varphi) \rightarrow [i]\varphi$$
, for $i = 0, 1$;

11.
$$[0]\varphi \to [1][0]\varphi$$
;

12.
$$[0]\varphi \rightarrow [0][1]\varphi$$
;

J2.
$$\langle 0 \rangle \varphi \rightarrow [1] \langle 0 \rangle \varphi$$
.

Inference rules: • Modus Ponens;

• Necessitation:
$$\frac{\varphi}{[i]\varphi}$$
, for $i=0,1$.

Where $\langle i \rangle \phi$ denotes $\neg [i] \neg \phi$.

Kripke Models of I₂

An I_2 -model M is a quadruple $\langle W, R_0, R_1, V \rangle$ where,

- W is a finite set;
- $V \subseteq W \times \{\text{sentence letters}\};$
- $R_0, R_1 \subseteq W \times W$ are transitive, irreflexive, and for all $w, x, y \in W$:
 - if wR_1x and xR_0y then wR_0y ;
 - if wR_1x and wR_0y then xR_0y .

Model completeness for I_2

The relation ⊨ is defined as per usual with:

- $M, x \models p \text{ iff } xVp$;
- $M, x \models [0]\phi$ iff $M, y \models \phi$ for every y such that xR_0y ;
- $M, x \models [1]\phi$ iff $M, y \models \phi$ for every y such that xR_1y ;

Theorem

```
\mathbf{I}_2 \vdash \phi iff for every \mathbf{I}_2-model M = \langle W, R_0, R_1, V \rangle, and every x \in W, it holds M, x \vDash \phi.
```

Model completeness for I₂

The relation \models is defined as per usual with:

- $M, x \models p \text{ iff } xVp$;
- $M, x \models [0]\phi$ iff $M, y \models \phi$ for every y such that xR_0y ;
- $M, x \models [1]\phi$ iff $M, y \models \phi$ for every y such that xR_1y ;

Theorem

 $\mathbf{I}_2 \vdash \phi$ iff for every \mathbf{I}_2 -model $M = \langle W, R_0, R_1, V \rangle$, and every $x \in W$, it holds $M, x \vDash \phi$.

Where GLP₂ fails:

$$\mathbf{w} \xrightarrow{\mathbf{x}} \mathbf{x}$$

Model completeness for I₂

The relation ⊨ is defined as per usual with:

- $M, x \models p \text{ iff } xVp$;
- $M, x \models [0]\phi$ iff $M, y \models \phi$ for every y such that xR_0y ;
- $M, x \models [1]\phi$ iff $M, y \models \phi$ for every y such that xR_1y ;

Theorem

 $\mathbf{I}_2 \vdash \phi$ iff for every \mathbf{I}_2 -model $M = \langle W, R_0, R_1, V \rangle$, and every $x \in W$, it holds $M, x \vDash \phi$.

Where GLP₂ fails:

$$\mathbf{w} \stackrel{\frown}{\Longrightarrow} \mathbf{x} \stackrel{\frown}{\Longrightarrow} \mathbf{x}$$

Two relations

We define the following two relations:

• $wR_{>0}x$ iff $wR_0x \lor wR_1x \lor \exists y (wR_0yR_1x)$;

Two relations

We define the following two relations:

• $wR_{>0}x$ iff $wR_0x \lor wR_1x \lor \exists y (wR_0yR_1x)$;

Ma define the following two veletions.

We define the following two relations:

• $wR_{>0}x$ iff $wR_0x \lor wR_1x \lor \exists y (wR_0yR_1x)$;

• $w\hat{R}_0x$ iff $wR_{\geq 0}x \vee \exists z \ (zR_1w \wedge zR_{\geq 0}x)$;

Two relations

We define the following two relations:

• $wR_{>0}x$ iff $wR_0x \lor wR_1x \lor \exists y (wR_0yR_1x)$;

• $w\hat{R_0}x$ iff $wR_{\geq 0}x \vee \exists z (zR_1w \wedge zR_{\geq 0}x)$; iff $wR_{\geq 0}x \vee \exists z (zR_1w \wedge zR_1x)$.

Definition

Given an I_2 -model $M = \langle W, R_0, R_1, V \rangle$ and $w \in W$, the generated submodel of M at w is the model:

$$w \uparrow M = \langle W_w, R_0 \cap W_w^2, R_1 \cap W_w^2, V \uparrow W_w \rangle,$$

where
$$W_w = \{x \in W : wR_{>0}x\} \cup \{w\}.$$

ϕ -completeness of am I_2 -model

Definitions

- $M = \langle W, R_0, R_1, V \rangle$ is ϕ -complete iff for every $x \in W$, $M, x \models [0]\psi \rightarrow [1]\psi$ for all subsentences $[0]\psi$ of ϕ .
- $\Delta \phi$ is $\phi \wedge [0]\phi \wedge [1]\phi \wedge [0][1]\phi$;
- $M\phi$ is $\Lambda\{\Delta([0]\psi \to [1]\psi) : [0]\psi$ is a subsentence of $\phi\}$.

Lemma

 $w \uparrow M$ is ϕ -complete iff $M, w \models M\phi$.

Assume $M = \langle W, R_0, R_1, V \rangle$ is ϕ -complete and let $N = \langle W, \hat{R_0}, R_1, V \rangle$. For every subsentence ψ of ϕ and $w \in W$,

 $M, w \vDash \psi \text{ iff } N, w \vDash \psi.$

Assume
$$M=\langle W,R_0,R_1,V\rangle$$
 is ϕ -complete and let $N=\langle W,\hat{R_0},R_1,V\rangle$. For every subsentence ψ of ϕ and $w\in W$,

$$M, w \vDash \psi \text{ iff } N, w \vDash \psi.$$

Proof

Assume $M = \langle W, R_0, R_1, V \rangle$ is ϕ -complete and let $N = \langle W, \hat{R_0}, R_1, V \rangle$. For every subsentence ψ of ϕ and $w \in W$,

$$M, w \vDash \psi \text{ iff } N, w \vDash \psi.$$

Proof

- If wR₁x
- if wR_0vR_1x
- If zR_1w and zR_1x

Assume $M = \langle W, R_0, R_1, V \rangle$ is ϕ -complete and let $N = \langle W, \hat{R}_0, R_1, V \rangle$. For every subsentence ψ of ϕ and $w \in W$,

$$M, w \vDash \psi \text{ iff } N, w \vDash \psi.$$

Proof

- If wR_1x then $M, w \not\models [1]\psi$;
- if wR_0yR_1x then $M, y \not\models [1]\psi$;
- If zR_1w and zR_1x then $M, z \not\models [1]\psi$;

Assume
$$M = \langle W, R_0, R_1, V \rangle$$
 is ϕ -complete and let $N = \langle W, \hat{R_0}, R_1, V \rangle$. For every subsentence ψ of ϕ and $w \in W$,

$$M, w \vDash \psi \text{ iff } N, w \vDash \psi.$$

Proof

- If wR_1x then $M, w \not\models [1]\psi$; then $M, w \not\models [0]\psi$;
- if wR_0yR_1x then $M, y \not\models [1]\psi$; then $M, y \not\models [0]\psi$;
- If zR_1w and zR_1x then $M, z \not\models [1]\psi$; then $M, z \not\models [0]\psi$;

Assume $M = \langle W, R_0, R_1, V \rangle$ is ϕ -complete and let $N = \langle W, \hat{R_0}, R_1, V \rangle$. For every subsentence ψ of ϕ and $w \in W$,

$$M, w \vDash \psi \text{ iff } N, w \vDash \psi.$$

Proof

Suppose that $M, w \models [0]\psi$ and $N, w \not\models [0]\psi$. So $N, x \not\models \psi$ for some $w\hat{R_0}x$ and by the I.H., $M, x \not\models \psi$. Thus not wR_0x .

- If wR_1x then $M, w \not\models [1]\psi$; then $M, w \not\models [0]\psi$;
- if wR_0yR_1x then $M, y \not\models [1]\psi$; then $M, y \not\models [0]\psi$;
- If zR_1w and zR_1x then $M, z \not\models [1]\psi$; then $M, z \not\models [0]\psi$;

Thus $M, a \not\vDash \psi$ for some wR_0a , a contradiction!

Thank You

Analytical Soundness