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Provability

® Formulas of arithmetic can be coded within the language of
arithmetic. Given a formula ¢, let "¢" be its code.

® Prov(x) is the Xi-formula stating that x is the code of a
formula that is provable in PA.

® Prf(y, x) is the Aj-formula stating that x is the code of a
formula y codes a proof of it in PA.

Notation:
We will write:

® Prov(¢) instead of Prov("¢");
® Prf(y, ¢) instead of Prf(y, ¢").
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Properties of the Prov

Lob's derivability conditions
i. PAF ¢ = PAF Prov(¢);
i. PAE Prov(¢ — 9) — (Prov(¢) — Prov(¢)));
iii. PAF Prov(¢) — Prov (Prov(g)).

Theorem
For every ¥ 1-formula ¢,

PA F ¢ — Prov(g).

Lob’s Theorem
PA F Prov(¢) — ¢ = PA F ¢.

Kripke Models
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Godel - Lob modal logic

GL is a propositional modal logic with the unary modality [I.

Axioms: Boolean tautologies

L O(p — ¢) = (Op — Oy);
. Oy — O0O;
3. O@¢ — ¢) — Oe.

N

Inference rules: ® Modus Ponens:;

® Necessitation: i.
Uy
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Solovay's Theorem for GL

An interpretation/realization is a function (-)* that maps
propositional variables to formulas of arithmetic. It can be
naturally expanded to a function from all modal formulas:

* (¢ =) = (o) = (V)%
° (=) = (o)
o (O¢)* := Prov ((¢)*).

Solovay's Theorem

For every modal formula ¢:
GLF ¢ <= PA (¢)*, for every realization (-)*.
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Analysis

® In Second order Arithmetic we add set variables and the
membership relation €.
® Analysis is the theory of Second order Arithmetic extending
PA with the axioms:
IND: VX (0€ XAVy (y€ X = y+1€X))—=Vy (yeX)
C: 3XVy (y € X < ¢(y)), for every formula ¢.

® We write |- ¢ to denote that ¢ is provable in Analysis.
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Second order Quantification in the arithmetical hierarchy

® AJ-formulas are those with only bounded quantification;

e 9. ,-formulas are those equivalent to a formula 3x ¢(x)
where ¢(x) is NY;

° ﬂ(,),H—formuIas are those equivalent to a formula 3x ¢(x)
where ¢(x) is £9;



Second Order Arithmetic
0®000

Second order Quantification in the arithmetical hierarchy

® AJ-formulas are those with only bounded quantification;

e 9. ,-formulas are those equivalent to a formula 3x ¢(x)
where ¢(x) is MY;

® N9, ,-formulas are those equivalent to a formula 3x ¢(x)
where ¢(x) is X0;

e Mi-formulas are those that are M9 for some n;

e 31 ,-formulas are those equivalent to a formula
Q1x1 - . . Qmxm3X ¢(x) where ¢(x) is M};

* M} ;-formulas are those equivalent to a formula
Qix1 - .. QmxmV¥X ¢(x) where ¢(x) is T1.

Here the Q; are one of the 3 and V.
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w-Provability

w F ¢ iff ¢ belongs to the closure of the class of the axioms of
analysis under the usual finitary rules and under the w-rule.

$(0), (1), - .-

x o(x)
w-Prov denotes the class of Godel numbers of w-provable
formulas;

w-rule:

Prov,,(x) denotes the Mi-formula of analysis defining w-Prov;
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w-Provability

w F ¢ iff ¢ belongs to the closure of the class of the axioms of
analysis under the usual finitary rules and under the w-rule.

$(0), (1), - .-

x o(x)
w-Prov denotes the class of Godel numbers of w-provable
formulas;

w-rule:

Prov,,(x) denotes the Mi-formula of analysis defining w-Prov;
Con(x) := = Prov("="x);

Cony(x) := = Prov,("='x).
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Japaridze Polymodal Logic

GLP; is the propositional modal logic with two unary modalities
[0] and [1].
Axioms: Boolean tautologies

Inference rules: ® Modus Ponens;
2

® Necessitation: —
[

, for i =0,1.
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Japaridze Polymodal Logic

GLP; is the propositional modal logic with two unary modalities
[0] and [1].
Axioms: Boolean tautologies
L1. [i](e = ¢) = ([{]le — [i]¢), for i =0,1;
L2. [ile — [i][i]¢, for i =0,1;
L3. [[]([i]le = ) = [i]e, for i =0,1;

Inference rules: ® Modus Ponens;
2

® Necessitation: —
[

, for i =0,1.
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Japaridze Polymodal Logic

GLP; is the propositional modal logic with two unary modalities
[0] and [1].
Axioms: Boolean tautologies

L1. [i](e = ¢) = ([{]le — [i]¢), for i =0,1;

L2. [ile = [i][i]e, for i =0,1;

L3. []([]]¢ = ¢) — [i]e, for i =0,1;

J1. [0]e — [1]¢;

J2. (0)p — [1(0)¢.
Inference rules:  ® Modus Ponens;

¥

® Necessitation: —
[

, for i =0,1.
Where (i)¢ denotes —[i]—¢.
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Solovay in Analysis

We extend the notion of a realization as before to include all
modal formulas in the language with the two unary modalities:

* ([0]¢)* = Prov(¢");
* ([1]¢)* = Provy,(¢").
Theorem

For every modal formula ¢:
GLPy F ¢ <= F (¢)*, for every realization (-)*.
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Arithmetical soundness

Lob's derivability conditions
i. F¢= F Prov,(o):

i. = Provy,(¢ — ¢) = (Provy(¢) — Provy(v));
iii. = Provy,(¢) — Prov,, ( Prov,,(¢)).

Kripke Models
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Arithmetical soundness

Lob's derivability conditions
i. F¢= F Prov,(o);

i. = Provy,(¢ — ¢) = (Provy(¢) — Provy(v));
iii. = Provy,(¢) — Prov,, ( Prov,,(¢)).

Lemma
= = Prov(¢) — Prov,, (- Prov(¢)).

Kripke Models
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Arithmetical soundness

Lob's derivability conditions
i. F¢= F Prov,(o);

i. = Provy,(¢ — ¢) = (Provy(¢) — Provy(v));
iii. = Provy,(¢) — Prov,, ( Prov,,(¢)).

Lemma
= = Prov(¢) — Prov,, (- Prov(¢)).

Proof Sketch:
Formalize in Analysis:

- Prf(0, ¢), = Prf(1,¢),...
vV x = Prf(x, ¢)

Kripke Models
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Arithmetical soundness

Lob's derivability conditions
i. F¢= F Prov,(o);

i. = Provy,(¢ — ¢) = (Provy(¢) — Provy(v));
iii. = Provy,(¢) — Prov,, ( Prov,,(¢)).

Lemma
= = Prov(¢) — Prov,, (- Prov(¢)).

Proof Sketch:
Formalize in Analysis:

- Prf(0, ¢), = Prf(1,¢),...

Vx ~Pr(x, 0) = wF = Prov(¢).
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M}-completeness

Theorem (Steven Orey; 1956)

For every Ni-formula ¢,

F ¢ — Prov, (o).

Kripke Models
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Mi-completeness

Theorem (Steven Orey; 1956)

For every Mi-formula ¢,

F ¢ — Prov, (o).

Theorem
Every N} formula of analysis is equivalent to a formula of the form:

Vf3Ix R(f(x));

® R defines a primitive recursive relation;
® f(x) denotes the code of the sequence (f(0),...,f(x —1)).
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Lemmata we will use to prove M}-completeness

Sec = {s : s codes a finite sequence and w -V f Ix R(s * f(x))}.

Lemma
If R(s), then s € Sec.
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Lemmata we will use to prove M}-completeness

Sec = {s : s codes a finite sequence and w -V f Ix R(s * f(x))}.

Lemma
If R(s), then s € Sec.

Proof:
Assume R(s), then - R(s) and so - V f R(s  f(0)).
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Lemmata we will use to prove M}-completeness

Sec = {s : s codes a finite sequence and w -V f Ix R(s * f(x))}.

Lemma
If R(s), then s € Sec.

Proof:
Assume R(s), then - R(s) and so - V f R(s  f(0)).

Lemma
If for every i it holds s x i € Sec, then s € Sec.
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Lemmata we will use to prove M}-completeness

Sec = {s : s codes a finite sequence and w -V f Ix R(s * f(x))}.

Lemma
If R(s), then s € Sec.

Proof:
Assume R(s), then - R(s) and so - V f R(s  f(0)).

Lemma
If for every i it holds s x i € Sec, then s € Sec.

Proof:
If whVf3x R(sxixf(x)) for every i,
thus — -
VFf3x R(s*0xf(x)),Vf3x R(s*1xf(x)),...

VyVf3x R(sx*yxf(x))
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Proving MM}-completeness

Suppose that ( ) & Sec;
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Proving MM}-completeness

Suppose that ( ) & Sec;
define the function g as follows:

° g(0)=()

Kripke Models
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Proving MM}-completeness

Suppose that { ) & Sec;
define the function g as follows:

* g(0)=()
® g(x+1) = pi{g(n) =i & Sec}, if g(n) i ¢ Sec for some i;
¢ g(x+1) = 0 otherwise.
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Proving MM}-completeness

Suppose that ( ) & Sec;
define the function g as follows:

* g(0)=(»
® g(x+1) = pi{g(n) =i & Sec}, if g(n)* i ¢ Sec for some i;
¢ g(x+1) = 0 otherwise.

By the previous Lemmata: Vx g(x) ¢ Sec,
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Proving MM}-completeness

Suppose that { ) & Sec;
define the function g as follows:

* g(0)=(»
® g(x+1) = pi{g(n) =i & Sec}, if g(n) i ¢ Sec for some i;
¢ g(x+1) = 0 otherwise.

By the previous Lemmata: Vx g(x) & Sec, and so Vx —R(g(x)).
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Proving MM}-completeness

Suppose that { ) & Sec;
define the function g as follows:

* g(0)=()
® g(x+1) = pi{g(n) =i & Sec}, if g(n) i ¢ Sec for some i;
¢ g(x+1) = 0 otherwise.

By the previous Lemmata: Vx g(x) & Sec, and so Vx —R(g(x)).
o Let F(x) = (gx+ 1)),
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Proving MM}-completeness

Suppose that { ) & Sec;
define the function g as follows:

* g(0)=()
® g(x+1) = pi{g(n) =i & Sec}, if g(n) i ¢ Sec for some i;
¢ g(x+1) = 0 otherwise.

By the previous Lemmata: Vx g(x) & Sec, and so Vx —R(g(x)).
o Let F(x) = (gx+ 1)),

e then Vx —R(f(x)), a contradiction!
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Ignatiev's fragment of GLP,

I is the subsystem of GLP:
Axioms: Boolean tautologies

Inference rules: ® Modus Ponens;
2

® Necessitation: —
[

, for i =0,1.
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Ignatiev's fragment of GLP,

I is the subsystem of GLP>:

Axioms: Boolean tautologies
L1. [](e — ¢) = ([{]lp — [i]¥), for i =0,1;
L2. [ile — [i][i]¢, for i =0,1;
L3. [il([/l¢ — ¢) — [i]e, for i =0,1;

Inference rules: ® Modus Ponens;

® Necessitation: i for i =0,1.
il
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Ignatiev's fragment of GLP,

I is the subsystem of GLP>:

Axioms: Boolean tautologies
L1. [](e — ¢) = ([{]lp — [i]¥), for i =0,1;
L2. [ile — [i][i]¢, for i =0,1;
L3. [il([/l¢ — ¢) — [i]e, for i =0,1;
I1. [0] — [1][0]¢;
J2. (0)p — [1)(0)¢.
Inference rules: ® Modus Ponens;
® Necessitation: i for i =0,1.
il
Where (i)¢ denotes —[i]—¢.



Historical Notes Second Order Arithmetic Analytical Soundness
0000 00000 0000

Beklemishev's J,

J5 is the subsystem of GLP5:

Axioms: Boolean tautologies

LL. [[](¢ — ¢) = ([lle — [i]¥), for i = 0,1,

L2. [ile = [i][i]e, for i =0,1;

L3. []([/]l¢ = ¢) — [i]e, for i =0,1;

I1. [0] — [1][0]¢;

12. [0]¢ — [0][1]¢;

J2. (0)p — [1(0)¢.
Inference rules:  ® Modus Ponens;
¥

® Necessitation: —
[

, for i =0,1.
Where (i)¢ denotes —[i]—¢.

Kripke Models
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Kripke Models of I,

An l>-model M is a quadruple (W, Ry, Ry, V') where,
® |V is a finite set;
® V C W x {sentence letters};
® Ry, R € W x W are transitive, irreflexive,

and for all w,x,y € W:
® if wRyx and xRyy then wRyy;
® if wRyx and wRyy then xRyy.

X —Y X

Kripke Models
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Model completeness for I,

The relation F is defined as per usual with:
° M, xE piff xVp;
* M,x F [0]¢ iff M,y E ¢ for every y such that xRyy;
* M, xF [1]¢ iff M,y E ¢ for every y such that xRyy;

Theorem

Iy = ¢ iff for every lp-model M = (W, Ry, Ry, V'), and every
x e W,

it holds M, x FE ¢.

Kripke Models
000®00000
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Model completeness for I,

The relation F is defined as per usual with:
° M, xE piff xVp;
* M,x F [0]¢ iff M,y E ¢ for every y such that xRyy;
* M, xF [1]¢ iff M,y E ¢ for every y such that xRyy;

Theorem

Iy = ¢ iff for every lp-model M = (W, Ry, Ry, V'), and every
x e W,

it holds M, x FE ¢.

Where GLP, fails:
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Model completeness for I,

The relation F is defined as per usual with:
° M, xE piff xVp;
* M,x F [0]¢ iff M,y E ¢ for every y such that xRyy;
* M, xF [1]¢ iff M,y E ¢ for every y such that xRyy;

Theorem

Iy = ¢ iff for every lp-model M = (W, Ry, Ry, V'), and every
x e W,

it holds M, x FE ¢.

Where GLP, fails:
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Two relations
We define the following two relations:
® wR>ox iff wRox V wRix V 3y (WwRoyR1x);

W—e— Y —— X

~ -
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Two relations
We define the following two relations:
® wR>ox iff wRox V wRix V 3y (WwRoyR1x);
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Two relations
We define the following two relations:
® wR>ox iff wRox V wRix V 3y (WwRoyR1x);
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Two relations

We define the following two relations:
® wR>ox iff wRox V wRix V 3y (WwRoyR1x);

* wRyx iff wR>ox V 3z (zRiw A zR>¢x); iff
WR>ox V 3z (zRiw A zR; x).

W s X w X
z

W---->X w X

z z*):y
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Definition:
Given an l-model M = (W, Ry, R1, V) and w € W, the generated

submodel of M at w is the model:
wtM = (W, Ry N WV%, INER WV%, V1 Wy,

where W,, = {x € W : wR>ox} U {w}.
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¢-completeness of am l,-model

Definitions
* M= (W, Ry, Ri1, V) is ¢p-complete iff for every x € W,
M, x E [0]y) — [1]¢ for all subsentences [0]¢) of ¢.
* Agis ¢ A[0]o A [1]¢ A [O][1]¢;
e Mg is A{A([0]y) — [1]%) : [0]¢) is a subsentence of ¢}.

Lemma
wtM is ¢-complete iff M, w E M.
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Theorem
Assume M = (W, Ry, Ry, V) is ¢-complete and let
N = (W, Ry, Ri, V). For every subsentence 1) of ¢ and w € W,

M,w E ) iff N,w E 9.
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Theorem
Assume M = (W, Ry, Ry, V) is ¢-complete and let
N = (W, Ry, Ri, V). For every subsentence 1) of ¢ and w € W,

M, w b iff N, w E .
Proof

Suppose that M, w F [0]% and N, w I [0]1).So N, x 1) for some
wRox and by the I.H., M, x 4. Thus not wRyx.
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Theorem
Assume M = (W, Ry, Ry, V) is ¢-complete and let
N = (W, Ry, Ri, V). For every subsentence 1) of ¢ and w € W,

M,w E ) iff N,w E 9.

Proof
Suppose that M, w F [0]% and N, w I [0]1).So N, x 1) for some
wRox and by the I.H., M, x 4. Thus not wRyx.

® If wRix
® if wRoyR:1x

e |f zRyw and zR1x
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Theorem
Assume M = (W, Ry, Ry, V) is ¢-complete and let
N = (W, Ry, Ri, V). For every subsentence 1) of ¢ and w € W,

M,w E ) iff N,w E 9.

Proof
Suppose that M, w F [0]% and N, w I [0]1).So N, x 1) for some
wRox and by the I.H., M, x 4. Thus not wRyx.

o If wRyx then M, w E [1]¢;
e if wRyyR1x then M,y ¥ [1]¢;
e If zRyw and zRix then M, z i [1]¢;



Kripke Models
000000000

Theorem
Assume M = (W, Ry, Ry, V) is ¢-complete and let
N = (W, Ry, Ri, V). For every subsentence 1) of ¢ and w € W,

M,w E ) iff N,w E 9.

Proof
Suppose that M, w F [0]% and N, w I [0]1).So N, x 1) for some
wRox and by the I.H., M, x 4. Thus not wRyx.

o If wRyx then M, w I [1]¢); then M, w E [0]¢;
e if wRyyR1x then M,y E [1]¢); then M,y & [0]4);
e If zRyw and zRyx then M, z i [1]4; then M, z & [0]¢;
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Theorem
Assume M = (W, Ry, Ry, V) is ¢-complete and let
N = (W, Ry, Ri, V). For every subsentence 1) of ¢ and w € W,

M,w E ) iff N,w E 9.

Proof

Suppose that M, w F [0]% and N, w I [0]1).So N, x 1) for some
wRox and by the I.H., M, x 4. Thus not wRyx.

¢ If wRix then M, w ¥ [1]¢; then M, w  [0]%;

e if wRyyR1x then M,y E [1]¢); then M,y & [0]4);

e If zRyw and zRyx then M, z i [1]4; then M, z & [0]¢;
Thus M, a & 1 for some wRpa, a contradiction!
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Thank You
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