Boolos' Analytical completeness Kripke Models Konstantinos Papafilippou Ghent University January 21, 2021 - Formulas of arithmetic can be coded within the language of arithmetic. Given a formula ϕ , let $^{r}\phi^{1}$ be its code. - Prov(x) is the Σ_1 -formula stating that x is the code of a formula that is provable in PA. - Prf(y, x) is the Δ_1 -formula stating that x is the code of a formula y codes a proof of it in PA. #### Notation: We will write: - Prov(ϕ) instead of Prov($^{r}\phi$); - $Prf(y, \phi)$ instead of $Prf(y, \lceil \phi \rceil)$. ### Löb's derivability conditions - i. $PA \vdash \phi \Rightarrow PA \vdash Prov(\phi)$: - ii. $PA \vdash Prov(\phi \rightarrow \psi) \rightarrow (Prov(\phi) \rightarrow Prov(\psi));$ - iii. $PA \vdash Prov(\phi) \rightarrow Prov(Prov(\phi))$. #### Theorem 0000 For every Σ_1 -formula ϕ , $$\mathsf{PA} \vdash \phi \to \mathsf{Prov}(\phi).$$ #### Löb's Theorem $\mathsf{PA} \vdash \mathsf{Prov}(\phi) \to \phi \Rightarrow \mathsf{PA} \vdash \phi$. # Gödel - Löb modal logic GL is a propositional modal logic with the unary modality \square . Axioms: Boolean tautologies - 1. $\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi);$ - 2. $\Box \varphi \rightarrow \Box \Box \varphi$; - 3. $\Box(\Box\varphi\to\varphi)\to\Box\varphi$. Inference rules: • Modus Ponens; • Necessitation: $\frac{\varphi}{\Box \varphi}$. # Solovay's Theorem for GL An interpretation/realization is a function $(\cdot)^*$ that maps propositional variables to formulas of arithmetic. It can be naturally expanded to a function from all modal formulas: - $(\phi \to \psi)^* := (\phi)^* \to (\psi)^*$; - $(\neg \phi)^* := \neg (\phi)^*$; - $(\Box \phi)^* := \operatorname{Prov}((\phi)^*).$ ### Solovay's Theorem For every modal formula ϕ : $GL \vdash \phi \iff PA \vdash (\phi)^*$, for every realization $(\cdot)^*$. ## **Analysis** - In Second order Arithmetic we add set variables and the membership relation ∈. - Analysis is the theory of Second order Arithmetic extending PA with the axioms: IND: $$\forall X \ (0 \in X \land \forall y \ (y \in X \rightarrow y + 1 \in X)) \rightarrow \forall y \ (y \in X);$$ C: $\exists X \forall y \ (y \in X \leftrightarrow \phi(y)),$ for every formula ϕ . • We write $\vdash \phi$ to denote that ϕ is provable in Analysis. # Second order Quantification in the arithmetical hierarchy - Δ_0^0 -formulas are those with only bounded quantification; - Σ_{n+1}^0 -formulas are those equivalent to a formula $\exists x \, \phi(x)$ where $\phi(x)$ is Π_n^0 ; - Π_{n+1}^0 -formulas are those equivalent to a formula $\exists x \, \phi(x)$ where $\phi(x)$ is Σ_n^0 ; ## Second order Quantification in the arithmetical hierarchy - Δ_0^0 -formulas are those with only bounded quantification; - Σ_{n+1}^0 -formulas are those equivalent to a formula $\exists x \, \phi(x)$ where $\phi(x)$ is Π_n^0 ; - Π_{n+1}^0 -formulas are those equivalent to a formula $\exists x \, \phi(x)$ where $\phi(x)$ is Σ_n^0 ; - Π_0^1 -formulas are those that are Π_n^0 for some n; - Σ_{n+1}^1 -formulas are those equivalent to a formula $Q_1x_1 \dots Q_mx_m \exists X \phi(x)$ where $\phi(x)$ is Π_n^1 ; - Π^1_{n+1} -formulas are those equivalent to a formula $Q_1x_1 \dots Q_mx_m \forall X \phi(x)$ where $\phi(x)$ is Σ^1_n . Here the Q_i are one of the \exists and \forall . ### ω -Provability - $\omega \vdash \phi$ iff ϕ belongs to the closure of the class of the axioms of analysis under the usual finitary rules and under the ω -rule. - ω -rule: $\frac{\phi(\underline{0}), \phi(\underline{1}), \dots}{\forall x \phi(x)}$ - ω -Prov denotes the class of Godel numbers of ω -provable formulas; - Prov $_{\omega}(x)$ denotes the Π^1_1 -formula of analysis defining ω -Prov; ### ω -Provability - $\omega \vdash \phi$ iff ϕ belongs to the closure of the class of the axioms of analysis under the usual finitary rules and under the ω -rule. - ω -rule: $\frac{\phi(\underline{0}), \phi(\underline{1}), \dots}{\forall x \phi(x)}$ - ω -Prov denotes the class of Godel numbers of ω -provable formulas; - Prov_{ω}(x) denotes the Π_1^1 -formula of analysis defining ω -Prov; - $Con(x) := \neg Prov(\ulcorner \neg \urcorner x);$ - $Con_{\omega}(x) := \neg Prov_{\omega}(\ulcorner \neg \urcorner x).$ ## Japaridze Polymodal Logic GLP₂ is the propositional modal logic with two unary modalities [0] and [1]. Axioms: Boolean tautologies - Inference rules: Modus Ponens: - Necessitation: $\frac{\varphi}{[i]\varphi}$, for i = 0, 1. ## Japaridze Polymodal Logic GLP₂ is the propositional modal logic with two unary modalities [0] and [1]. Axioms: Boolean tautologies L1. $$[i](\varphi \rightarrow \psi) \rightarrow ([i]\varphi \rightarrow [i]\psi)$$, for $i = 0, 1$; L2. $$[i]\varphi \rightarrow [i][i]\varphi$$, for $i = 0, 1$; L3. $$[i]([i]\varphi \rightarrow \varphi) \rightarrow [i]\varphi$$, for $i = 0, 1$; - Inference rules: Modus Ponens: - *Necessitation*: $\frac{\varphi}{[i]\varphi}$, for i = 0, 1. ## Japaridze Polymodal Logic GLP₂ is the propositional modal logic with two unary modalities [0] and [1]. Axioms: Boolean tautologies L1. $$[i](\varphi \rightarrow \psi) \rightarrow ([i]\varphi \rightarrow [i]\psi)$$, for $i = 0, 1$; L2. $$[i]\varphi \rightarrow [i][i]\varphi$$, for $i = 0, 1$; L3. $$[i]([i]\varphi \rightarrow \varphi) \rightarrow [i]\varphi$$, for $i = 0, 1$; J1. $$[0]\varphi \rightarrow [1]\varphi$$; J2. $$\langle 0 \rangle \varphi \rightarrow [1] \langle 0 \rangle \varphi$$. Inference rules: • Modus Ponens: • Necessitation: $$\frac{\varphi}{[i]\varphi}$$, for $i=0,1$. Where $\langle i \rangle \phi$ denotes $\neg [i] \neg \phi$. ## Solovay in Analysis We extend the notion of a realization as before to include all modal formulas in the language with the two unary modalities: - $([0]\phi)^* = \text{Prov}(\phi^*);$ - $([1]\phi)^* = \mathsf{Prov}_{\omega}(\phi^*).$ #### **Theorem** For every modal formula ϕ : $GLP_2 \vdash \phi \iff \vdash (\phi)^*$, for every realization $(\cdot)^*$. Analytical Soundness •000 ### Löb's derivability conditions - i. $\vdash \phi \Rightarrow \vdash \mathsf{Prov}_{\omega}(\phi)$; - ii. $\vdash \mathsf{Prov}_{\omega}(\phi \to \psi) \to (\mathsf{Prov}_{\omega}(\phi) \to \mathsf{Prov}_{\omega}(\psi));$ - iii. $\vdash \mathsf{Prov}_{\omega}(\phi) \to \mathsf{Prov}_{\omega}(\mathsf{Prov}_{\omega}(\phi))$. Analytical Soundness •000 ### Löb's derivability conditions - i. $\vdash \phi \Rightarrow \vdash \mathsf{Prov}_{\omega}(\phi)$: - ii. $\vdash \mathsf{Prov}_{\omega}(\phi \to \psi) \to (\mathsf{Prov}_{\omega}(\phi) \to \mathsf{Prov}_{\omega}(\psi));$ - iii. $\vdash \mathsf{Prov}_{\omega}(\phi) \to \mathsf{Prov}_{\omega}(\mathsf{Prov}_{\omega}(\phi))$. #### Lemma $$\vdash \neg \operatorname{\mathsf{Prov}}(\phi) \to \operatorname{\mathsf{Prov}}_{\omega} (\neg \operatorname{\mathsf{Prov}}(\phi)).$$ Analytical Soundness •000 ### Löb's derivability conditions - i. $\vdash \phi \Rightarrow \vdash \mathsf{Prov}_{\omega}(\phi)$: - ii. $\vdash \mathsf{Prov}_{\omega}(\phi \to \psi) \to (\mathsf{Prov}_{\omega}(\phi) \to \mathsf{Prov}_{\omega}(\psi));$ - iii. $\vdash \mathsf{Prov}_{\omega}(\phi) \to \mathsf{Prov}_{\omega}(\mathsf{Prov}_{\omega}(\phi))$. #### Lemma $$\vdash \neg \operatorname{\mathsf{Prov}}(\phi) \to \operatorname{\mathsf{Prov}}_{\omega} (\neg \operatorname{\mathsf{Prov}}(\phi)).$$ ### Proof Sketch: Formalize in Analysis: $$\frac{\neg \operatorname{Prf}(0,\phi), \neg \operatorname{Prf}(1,\phi), \dots}{\forall x \neg \operatorname{Prf}(x,\phi)}$$ Analytical Soundness •000 ### Löb's derivability conditions - i. $\vdash \phi \Rightarrow \vdash \mathsf{Prov}_{\omega}(\phi)$: - ii. $\vdash \mathsf{Prov}_{\omega}(\phi \to \psi) \to (\mathsf{Prov}_{\omega}(\phi) \to \mathsf{Prov}_{\omega}(\psi));$ - iii. $\vdash \mathsf{Prov}_{\omega}(\phi) \to \mathsf{Prov}_{\omega}(\mathsf{Prov}_{\omega}(\phi))$. #### Lemma $$\vdash \neg \operatorname{\mathsf{Prov}}(\phi) \to \operatorname{\mathsf{Prov}}_{\omega} (\neg \operatorname{\mathsf{Prov}}(\phi)).$$ #### Proof Sketch: Formalize in Analysis: $$\frac{\neg \operatorname{Prf}(0,\phi), \neg \operatorname{Prf}(1,\phi), \dots}{\forall x \neg \operatorname{Prf}(x,\phi)} \Rightarrow \omega \vdash \neg \operatorname{Prov}(\phi).$$ Analytical Soundness 0000 Theorem (Steven Orey; 1956) For every Π_1^1 -formula ϕ , $\vdash \phi \rightarrow \mathsf{Prov}_{\omega}(\phi)$. # Π_1^1 -completeness ### Theorem (Steven Orey; 1956) For every Π_1^1 -formula ϕ , $$\vdash \phi \rightarrow \mathsf{Prov}_{\omega}(\phi).$$ #### **Theorem** Every Π_1^1 formula of analysis is equivalent to a formula of the form: $$\forall f \exists x \ R(\overline{f}(x));$$ - R defines a primitive recursive relation; - $\overline{f}(x)$ denotes the code of the sequence $\langle f(0), \ldots, f(x-1) \rangle$. $Sec = \{s : s \text{ codes a finite sequence and } \omega \vdash \forall f \exists x \ R(s * \overline{f}(x))\}.$ Analytical Soundness 0000 ### Lemma If R(s), then $s \in Sec$. $Sec = \{s : s \text{ codes a finite sequence and } \omega \vdash \forall f \exists x \ R(s * \overline{f}(x))\}.$ Analytical Soundness 0000 ### Lemma If R(s), then $s \in Sec$. #### Proof: Assume R(s), then $\vdash R(s)$ and so $\vdash \forall f \ R(s * \overline{f}(0))$. Analytical Soundness 0000 $Sec = \{s : s \text{ codes a finite sequence and } \omega \vdash \forall f \exists x \ R(s * \overline{f}(x))\}.$ #### Lemma If R(s), then $s \in Sec$. #### Proof: Assume R(s), then $\vdash R(s)$ and so $\vdash \forall f \ R(s * \overline{f}(0))$. #### Lemma If for every i it holds $s * i \in Sec$, then $s \in Sec$. # Lemmata we will use to prove Π_1^1 -completeness $Sec = \{s : s \text{ codes a finite sequence and } \omega \vdash \forall f \exists x \ R(s * \overline{f}(x))\}.$ #### Lemma If R(s), then $s \in Sec$. #### Proof: Assume R(s), then $\vdash R(s)$ and so $\vdash \forall f \ R(s * \overline{f}(0))$. #### Lemma If for every i it holds $s * i \in Sec$, then $s \in Sec$. ### Proof: If $\omega \vdash \forall f \exists x \ R(s * i * \overline{f}(x))$ for every i, thus $$\frac{\forall f \exists x \ R(s*0*\overline{f}(x)), \forall f \exists x \ R(s*1*\overline{f}(x)), \dots}{\forall y \forall f \exists x \ R(s*y*\overline{f}(x))}$$ Analytical Soundness 0000 Suppose that $\langle \ \rangle \not\in Sec;$ Suppose that $\langle \ \rangle \not\in Sec;$ define the function g as follows: • $g(0) = \langle \rangle$; ## Proving Π_1^1 -completeness Suppose that $\langle \ \rangle \not\in Sec;$ define the function g as follows: - $g(0) = \langle \rangle$; - $g(x+1) = \mu i \{g(n) * i \notin Sec\}$, if $g(n) * i \notin Sec$ for some i; - g(x+1) = 0 otherwise. ## Proving Π_1^1 -completeness Suppose that $\langle \ \rangle \not\in Sec;$ define the function g as follows: - $g(0) = \langle \rangle$; - $g(x+1) = \mu i \{g(n) * i \notin Sec\}$, if $g(n) * i \notin Sec$ for some i; - g(x+1) = 0 otherwise. By the previous Lemmata: $\forall x \ g(x) \notin Sec$, Suppose that $\langle \ \rangle \not\in Sec;$ define the function g as follows: - $g(0) = \langle \rangle$; - $g(x+1) = \mu i \{g(n) * i \notin Sec\}$, if $g(n) * i \notin Sec$ for some i; - g(x+1) = 0 otherwise. By the previous Lemmata: $\forall x \ g(x) \notin Sec$, and so $\forall x \ \neg R(g(x))$. ## Proving Π_1^1 -completeness Suppose that $\langle \ \rangle \not\in Sec;$ define the function g as follows: - $g(0) = \langle \rangle$; - $g(x+1) = \mu i \{g(n) * i \notin Sec\}$, if $g(n) * i \notin Sec$ for some i; - g(x+1) = 0 otherwise. By the previous Lemmata: $\forall x \ g(x) \notin Sec$, and so $\forall x \ \neg R(g(x))$. • Let $f(x) = (g(x+1))_x$, ## Proving Π_1^1 -completeness Suppose that $\langle \ \rangle \not\in Sec;$ define the function g as follows: - $g(0) = \langle \rangle$; - $g(x+1) = \mu i \{g(n) * i \notin Sec\}$, if $g(n) * i \notin Sec$ for some i; - g(x+1) = 0 otherwise. By the previous Lemmata: $\forall x \ g(x) \notin Sec$, and so $\forall x \ \neg R(g(x))$. - Let $f(x) = (g(x+1))_x$, - then $\forall x \neg R(\overline{f}(x))$, a contradiction! ## Ignatiev's fragment of GLP₂ I_2 is the subsystem of GLP_2 : Axioms: Boolean tautologies Inference rules: • Modus Ponens: • Necessitation: $\frac{\varphi}{[i]\varphi}$, for i=0,1. ## Ignatiev's fragment of GLP₂ I_2 is the subsystem of GLP_2 : Axioms: Boolean tautologies L1. $[i](\varphi \rightarrow \psi) \rightarrow ([i]\varphi \rightarrow [i]\psi)$, for i = 0, 1; L2. $[i]\varphi \rightarrow [i][i]\varphi$, for i = 0, 1; L3. $[i]([i]\varphi \rightarrow \varphi) \rightarrow [i]\varphi$, for i = 0, 1; Inference rules: • Modus Ponens; • Necessitation: $\frac{\varphi}{[i]\varphi}$, for i=0,1. # Ignatiev's fragment of GLP₂ ### I_2 is the subsystem of GLP_2 : Axioms: Boolean tautologies L1. $[i](\varphi \rightarrow \psi) \rightarrow ([i]\varphi \rightarrow [i]\psi)$, for i = 0, 1; L2. $[i]\varphi \rightarrow [i][i]\varphi$, for i = 0, 1; L3. $[i]([i]\varphi \rightarrow \varphi) \rightarrow [i]\varphi$, for i = 0, 1; 11. $[0]\varphi \rightarrow [1][0]\varphi$; J2. $\langle 0 \rangle \varphi \rightarrow [1] \langle 0 \rangle \varphi$. Inference rules: • Modus Ponens; • *Necessitation*: $\frac{\varphi}{[i]\varphi}$, for i = 0, 1. Where $\langle i \rangle \phi$ denotes $\neg [i] \neg \phi$. ### Beklemishev's J_2 ### J_2 is the subsystem of GLP_2 : Axioms: Boolean tautologies L1. $$[i](\varphi \rightarrow \psi) \rightarrow ([i]\varphi \rightarrow [i]\psi)$$, for $i = 0, 1$; L2. $$[i]\varphi \rightarrow [i][i]\varphi$$, for $i = 0, 1$; L3. $$[i]([i]\varphi \rightarrow \varphi) \rightarrow [i]\varphi$$, for $i = 0, 1$; 11. $$[0]\varphi \to [1][0]\varphi$$; 12. $$[0]\varphi \rightarrow [0][1]\varphi$$; J2. $$\langle 0 \rangle \varphi \rightarrow [1] \langle 0 \rangle \varphi$$. Inference rules: • Modus Ponens; • Necessitation: $$\frac{\varphi}{[i]\varphi}$$, for $i=0,1$. Where $\langle i \rangle \phi$ denotes $\neg [i] \neg \phi$. ## Kripke Models of I₂ An I_2 -model M is a quadruple $\langle W, R_0, R_1, V \rangle$ where, - W is a finite set; - $V \subseteq W \times \{\text{sentence letters}\};$ - $R_0, R_1 \subseteq W \times W$ are transitive, irreflexive, and for all $w, x, y \in W$: - if wR_1x and xR_0y then wR_0y ; - if wR_1x and wR_0y then xR_0y . # Model completeness for I_2 The relation ⊨ is defined as per usual with: - $M, x \models p \text{ iff } xVp$; - $M, x \models [0]\phi$ iff $M, y \models \phi$ for every y such that xR_0y ; - $M, x \models [1]\phi$ iff $M, y \models \phi$ for every y such that xR_1y ; #### **Theorem** ``` \mathbf{I}_2 \vdash \phi iff for every \mathbf{I}_2-model M = \langle W, R_0, R_1, V \rangle, and every x \in W, it holds M, x \vDash \phi. ``` # Model completeness for I₂ The relation \models is defined as per usual with: - $M, x \models p \text{ iff } xVp$; - $M, x \models [0]\phi$ iff $M, y \models \phi$ for every y such that xR_0y ; - $M, x \models [1]\phi$ iff $M, y \models \phi$ for every y such that xR_1y ; #### **Theorem** $\mathbf{I}_2 \vdash \phi$ iff for every \mathbf{I}_2 -model $M = \langle W, R_0, R_1, V \rangle$, and every $x \in W$, it holds $M, x \vDash \phi$. Where GLP₂ fails: $$\mathbf{w} \xrightarrow{\mathbf{x}} \mathbf{x}$$ # Model completeness for I₂ The relation ⊨ is defined as per usual with: - $M, x \models p \text{ iff } xVp$; - $M, x \models [0]\phi$ iff $M, y \models \phi$ for every y such that xR_0y ; - $M, x \models [1]\phi$ iff $M, y \models \phi$ for every y such that xR_1y ; #### **Theorem** $\mathbf{I}_2 \vdash \phi$ iff for every \mathbf{I}_2 -model $M = \langle W, R_0, R_1, V \rangle$, and every $x \in W$, it holds $M, x \vDash \phi$. Where GLP₂ fails: $$\mathbf{w} \stackrel{\frown}{\Longrightarrow} \mathbf{x} \stackrel{\frown}{\Longrightarrow} \mathbf{x}$$ # Two relations We define the following two relations: • $wR_{>0}x$ iff $wR_0x \lor wR_1x \lor \exists y (wR_0yR_1x)$; # Two relations We define the following two relations: • $wR_{>0}x$ iff $wR_0x \lor wR_1x \lor \exists y (wR_0yR_1x)$; # Ma define the following two veletions. We define the following two relations: • $wR_{>0}x$ iff $wR_0x \lor wR_1x \lor \exists y (wR_0yR_1x)$; • $w\hat{R}_0x$ iff $wR_{\geq 0}x \vee \exists z \ (zR_1w \wedge zR_{\geq 0}x)$; # Two relations We define the following two relations: • $wR_{>0}x$ iff $wR_0x \lor wR_1x \lor \exists y (wR_0yR_1x)$; • $w\hat{R_0}x$ iff $wR_{\geq 0}x \vee \exists z (zR_1w \wedge zR_{\geq 0}x)$; iff $wR_{\geq 0}x \vee \exists z (zR_1w \wedge zR_1x)$. #### Definition Given an I_2 -model $M = \langle W, R_0, R_1, V \rangle$ and $w \in W$, the generated submodel of M at w is the model: $$w \uparrow M = \langle W_w, R_0 \cap W_w^2, R_1 \cap W_w^2, V \uparrow W_w \rangle,$$ where $$W_w = \{x \in W : wR_{>0}x\} \cup \{w\}.$$ # ϕ -completeness of am I_2 -model # **Definitions** - $M = \langle W, R_0, R_1, V \rangle$ is ϕ -complete iff for every $x \in W$, $M, x \models [0]\psi \rightarrow [1]\psi$ for all subsentences $[0]\psi$ of ϕ . - $\Delta \phi$ is $\phi \wedge [0]\phi \wedge [1]\phi \wedge [0][1]\phi$; - $M\phi$ is $\Lambda\{\Delta([0]\psi \to [1]\psi) : [0]\psi$ is a subsentence of $\phi\}$. ### Lemma $w \uparrow M$ is ϕ -complete iff $M, w \models M\phi$. Assume $M = \langle W, R_0, R_1, V \rangle$ is ϕ -complete and let $N = \langle W, \hat{R_0}, R_1, V \rangle$. For every subsentence ψ of ϕ and $w \in W$, $M, w \vDash \psi \text{ iff } N, w \vDash \psi.$ Assume $$M=\langle W,R_0,R_1,V\rangle$$ is ϕ -complete and let $N=\langle W,\hat{R_0},R_1,V\rangle$. For every subsentence ψ of ϕ and $w\in W$, $$M, w \vDash \psi \text{ iff } N, w \vDash \psi.$$ # Proof Assume $M = \langle W, R_0, R_1, V \rangle$ is ϕ -complete and let $N = \langle W, \hat{R_0}, R_1, V \rangle$. For every subsentence ψ of ϕ and $w \in W$, $$M, w \vDash \psi \text{ iff } N, w \vDash \psi.$$ # Proof - If wR₁x - if wR_0vR_1x - If zR_1w and zR_1x Assume $M = \langle W, R_0, R_1, V \rangle$ is ϕ -complete and let $N = \langle W, \hat{R}_0, R_1, V \rangle$. For every subsentence ψ of ϕ and $w \in W$, $$M, w \vDash \psi \text{ iff } N, w \vDash \psi.$$ # Proof - If wR_1x then $M, w \not\models [1]\psi$; - if wR_0yR_1x then $M, y \not\models [1]\psi$; - If zR_1w and zR_1x then $M, z \not\models [1]\psi$; Assume $$M = \langle W, R_0, R_1, V \rangle$$ is ϕ -complete and let $N = \langle W, \hat{R_0}, R_1, V \rangle$. For every subsentence ψ of ϕ and $w \in W$, $$M, w \vDash \psi \text{ iff } N, w \vDash \psi.$$ # Proof - If wR_1x then $M, w \not\models [1]\psi$; then $M, w \not\models [0]\psi$; - if wR_0yR_1x then $M, y \not\models [1]\psi$; then $M, y \not\models [0]\psi$; - If zR_1w and zR_1x then $M, z \not\models [1]\psi$; then $M, z \not\models [0]\psi$; Assume $M = \langle W, R_0, R_1, V \rangle$ is ϕ -complete and let $N = \langle W, \hat{R_0}, R_1, V \rangle$. For every subsentence ψ of ϕ and $w \in W$, $$M, w \vDash \psi \text{ iff } N, w \vDash \psi.$$ # Proof Suppose that $M, w \models [0]\psi$ and $N, w \not\models [0]\psi$. So $N, x \not\models \psi$ for some $w\hat{R_0}x$ and by the I.H., $M, x \not\models \psi$. Thus not wR_0x . - If wR_1x then $M, w \not\models [1]\psi$; then $M, w \not\models [0]\psi$; - if wR_0yR_1x then $M, y \not\models [1]\psi$; then $M, y \not\models [0]\psi$; - If zR_1w and zR_1x then $M, z \not\models [1]\psi$; then $M, z \not\models [0]\psi$; Thus $M, a \not\vDash \psi$ for some wR_0a , a contradiction! # Thank You Analytical Soundness